AR Manual
The CASAS Project

 Set ImplName * MERGEFORMAT
[image: image1.png]

AR Manual

Version 1.1
Table of Contents

ivTable of Contents

Preface
vii
1.
Introduction
1
1.1
Overview
1
1.2
Reference Documents
1
2.
Downloading and Installing
2
2.1
Download
2
2.2
Files
2
2.3
Install
2
3.
Data Format
3
3.1
Data Input
3
3.1.1
Date
3
3.1.2
Time
3
3.1.3
SensorID
3
3.1.4
SensorValue
3
3.1.5
Label
3
3.1.6
Comments
4
3.1.7
Example
4
3.1.8
Samples
5
3.2
Header Input
5
3.2.1
numactivities
5
3.2.2
activitynames
5
3.2.3
numfeatures
6
3.2.4
numfeaturevalues
6
3.2.5
selectfeatures
6
3.2.6
mapsensors
7
3.2.7
model
7
4.
Executing
8
4.1
Command
8
4.1.1
Options
8
4.2
Other Tools
9
4.2.1
PyViz
9
5.
Notes/Issues
10
5.1
Unix
10
A.
Appendix - Terminology
11

Preface

Conventions

The following documentation conventions are followed within this document.

bold underlined text signifies notes or comments to the reader.

Italicized text signifies file names, directories or programs.

Bold italicized text signifies a reference to another document.

1. Introduction

The following document provides a manual on how to use the AR program.

1.1 Overview

The AR program learns models of activities from sensor data and can use these models to automatically label a sequence of sensor data with the corresponding activity. While the details of how AR works internally will not be discussed here (you can refer to other documents on the CASAS web-site for more information), this document will provide you with the specifics on how to install and run the application. The AR program, sample datasets, and documentation are made available as part of the CASAS project located at Washington State University.
This document contains the following sections:

· Chapter Two: instructions on how to download and install AR
· Chapter Three: layout of the input data file and parameter file
· Chapter Four: instructions on running AR
· Chapter Five: various notes and issues regarding the AR program
· Appendix A: terminology

1.2 Reference Documents

· CASAS Home Page: http://ailab.wsu.edu/casas
2. Downloading and Installing

In order to build and run the AR program, you must first download the appropriate files.

2.1 Download

The AR system, including documentation, papers, and research, can be found on the AR home page (http://ailab.wsu.edu/casas/tools.html).

In order to get the latest copy of the program, you must choose the Download option located on the left-hand side of the AR home page. After clicking the Download link, you will be redirected to the “Download” page, which contains a link to the latest source code for the AR application.

2.2 Files

Once you have downloaded the program and unzipped the files, the following directory/file structure is created:

· ./bin/ -- directory of executables (initially empty)

· ./COPYRIGHT -- file containing the AR copyright notice

· ./docs/ -- directory containing this manual

· ./datasets/ -- directory containing some sample sensor event input files

· ./README – file containing brief directions on how to build AR, as well as the version histories

· ./src/ - directory containing the source code and make files
2.3 Install

After downloading and unzipping the files, you can now install the AR application. Installation consists of actually building the application so that it is now native to your Unix/Linux system.

AR uses the standard make facility to build its application. In order to build the application, you should perform the following steps:

1. Change directory to ar/src
2. At the command prompt, enter: make. This will compile the AR program.

3. At the command prompt, enter: make install. This will copy the executables to the ar/bin directory

4. At the command prompt, enter: make clean. This will clean up the src directory (removing object files).

3. Data Format

The following section describes the format of the input dataset that must be supplied in order to run the AR program.

3.1 Data Input

The input to the AR application is a textual representation of a sequence of sensor events. Each line in the input file contains a single sensor event in the format:

Date Time SensorID SensorValue <label>

The fields in this entry are separated by spaces. While AR will process any data that is syntactically correct, some of the models expect that the sensor events are presented in increasing time order in the input file.

3.1.1 Date
The date refers to the specific day on which the sensor event occurred. The current version of AR expects that the date will be presented in the format:

yyyy-mm-dd

3.1.2 Time

The time refers to the time of day at which the sensor event occurred. The current version of AR expects that the time will be presented in the format:

hh<:mm:ss.x*>

where the minutes, seconds, and milliseconds are optional and an arbitrary precision is allowed. In the current version of AR only the hour values are used to generate the models and recognize activities.

3.1.3 SensorID

Each sensor that is used in the dataset has a specific ID which is represented by a string. The list of recognized identifier names is provided in the user-supplied parameter file.

3.1.4 SensorValue

The sensor which generated the current event has a value for this event. Currently the sensor values are represented and processed as string values.

3.1.5 Label

Each sensor event can be by an optional label that designate the activity to which the sensor event belongs. The label can be represented by any of the following formats:
1. No label.

In this case no label is provided for the sensor event. If any activities are currently “active” then the sensor event will be assumed to belong to this activity. Otherwise, it will not be associated with any activity.
2. Begin activity label. The format for this sensor event is:

Date Time SensorID SensorValue ActivityLabel begin

The interpretation is that this sensor event corresponds to an activity with the label “ActivityLabel”. Furthermore, this particular activity is now considered “active” until an event is labeled with this activity and an end entry. Every sensor event that occurs while this activity is active is considered to be part of this particular activity. No labels are needed in between the activity begin and end if they are in fact part of the activity.

3. End activity label. The format for this sensor event is:

Date Time SensorID SensorValue ActivityLabel end
The interpretation is that this sensor event corresponds to an activity with the label “ActivityLabel”. Furthermore, this event is the last one for the current occurrence of the particular activity and the activity is now longer considered active.
4. Single activity label. The format for this sensor event is:

Date Time SensorID SensorValue ActivityLabel
The interpretation is that this sensor event corresponds to an activity with the label “ActivityLabel”. If this activity is currently active, then this is interpreted to mean that the current sensor event belongs only to this specific activity and not to any other activities that are currently active. If the activity is not currently active, then this individual event will constitute a separate occurrence of the activity.
It is possible that a sensor event can be affiliated with more than one activity. There are multiple ways of handling this situation. Specifically, more than one activity can be active at one time – they can overlap or be embedded inside other activities. In this case, each sensor event that occurs in the overlap region will be assigned to all active activities (unless a specific label is assigned to the sensor event, as in case 4 above). If the activities to which the sensor event belongs are not currently active, then the only way to assign the event to more than one activity is to make multiple copies of the event (with the same date, time, sensor ID, and value) and assign each copy to one of the activities with which it is associated.
3.1.6 Comments

You can also choose to put comments in your input data file. Comments are designated by the percent “%” sign. Any line starting with “%” will be ignored.

3.1.7 Example

As an example, suppose that a smart home resident wakes up in the morning and prepares breakfast while occasionally going into the office to check email. The data input file may appear as:

% Morning routine

% Here is an example of an isolated labeled sensor event

2010-02-16 05:46:00.08 M001 ON Sleep

% These events have no labels. The events are not associated with any activity.

2010-02-16 05:46:02.00 M002 ON

2010-02-16 05:46:03.05 M002 OFF

2010-02-16 05:46:04.00 M001 OFF

% This event signals the start of breakfast preparation.

2010-02-16 05:48:15.09 D001 OPEN Prepare_breakfast begin

% These events are associated with breakfast preparation.

2010-02-16 05:48:18.0807 M009 ON

2010-02-16 05:48:19.098933 M009 OFF

% The activity Work begins

2010-02-16 05:50:16.07 M011 ON Work begin

% This event is associated with both Prepare_breakfast and Work activities

2010-02-16 05:50:18.09 M011 OFF

2010-02-16 05:50:24.00 M12 ON

2010-02-16 05:50:34.08 M12 OFF

% These events are only associated with Prepare_breakfast

2010-02-16 05:51:08.08 D001 CLOSED Prepare_breakfast

% This event ends the Prepare_breakfast activity

2010-02-16 05:52:26.09 M009 ON Prepare_breakfast end

% This event ends the Work activity

2010-02-16 05:52:27.04 M011 ON Work end

3.1.8 Samples

Various sample input data files can be found online at http://ailab.wsu.edu/casas/datasets.html.
3.2 Header Input

In addition to a data input file, the user inputs an optional header file. The header file customizes operation of AR for the particular data file that is being used. Some of the header file options can be specified on the command line instead of in the header file. The format of each entry in the header file is:

ParameterName

ParameterValue(s)
The following sections detail the parameters that can be defined in the header file.
3.2.1 numactivities

This parameter specifies the number of activities, or activity labels, which will be learned. The default value for this parameter is 1.
3.2.2 activitynames

This parameter refers to the string labels for each activity, given one per line. The default value is empty string. When the data file is ready one these activity labels should be used. If there is a label that is in the list but is not used a warning will be output. If there is a label that appears in the data file but is not included in the list a warning will be output and the program will be terminated. Note: This parameter needs to appear in the file after the entry for numactivities.
3.2.3 numfeatures

This parameter specifies the number of features that are used to describe the sensor event. The default number of features is 5. The default interpretation of the five features is:
1. Sensor. This is an integer value in the range of 0 to the number of logical sensor values (defined in a separate parameter). Note that the number of logical sensors can be any value between 1 and the number of physical sensors. The number of logical sensors is generally defined to be smaller than the number of physical sensors if multiple physical sensors will be mapped onto one logical sensor, thereby clustering the sensors together into one logical or functional unit.
2. Time of day. This is the input time of the sensor event but is discretized to an integer value (the discretization process is explained in a separate parameter entry).

3. Day of week. The input date of the sensor event is converted into a value in the range of 0 to 6 that represents the day of the week on which the sensor event occurred.
4. Previous activity. This feature is an integer value that represents the activity that occurred before the current activity.

5. Activity length. This feature represents the length of the current activity measured in number of sensor events.
3.2.4 numfeaturevalues

This parameter specifies the number of values that are defined for each feature value. The values of this parameter should be listed one per line and the number of entries should equal the numfeatures parameter value. Note: This parameter needs to appear in the file after the entry for numfeatures. The default values for this parameter are:
1. Sensor. The default number of feature values is equal to the number of physical sensors, defined by parameter numphysicalsensors.
2. Time of day. The default number of feature values is 5.

3. Day of week. The default number of feature values is 7.

4. Previous activity. The default number of feature values is equal to the number of activities, defined by parameter numactivities.

5. Activity length. The default number of feature values is 3.

3.2.5 selectfeatures

This parameter specifies whether the range values for a given feature are determined. The values should be listed one per line and the number of entries should equal the numfeatures parameter value. Note: This parameter needs to appear in the file after the entry for numfeatures and after the entry for numfeaturevalues. Two types of entries are considered:

0. If a value of 1 is provided then the default ranges will be used for the feature. The default values for the predefined features are:

· Feature 0 (sensors): ranges are not used by default

· Feature 1 (time): default ranges are 0-5, 6-10, 11-15, 16-20, 21-24

· Feature 2 (day of week): default ranges are 0, 1, 2, 3, 4, 5, 6

· Feature 3 (previous): ranges are not used by default

· Feature 4 (length): default ranges are 0-150, 151-500, 501+
1. If a value of 1 is provided then the range values will be determined automatically using equal-frequency binning. The number of bins, or ranges, is determined by the numfeaturevalues defined for the corresponding feature. The first range will start at 0 and each range cutoff value will be determined so that approximately the same number of values are put into each bin.

3.2.6 mapsensors

This parameter provides a mapping from physical sensors to logical sensors. Each entry appears on a separate line and has the format:

PhysicalSensor LogicalSensor
Where the physical sensor is a string name that appears in the data file as the SensorID and the logical sensor is an integer value in the range 0 to the number of feature values that is defined for the sensor feature by the numfeaturevalues parameter. Note: This parameter needs to appear in the file after the entry for numfeaturevalues.
3.2.7 model

This parameter specifies the learning algorithm that will be used to model the activities. The possible values are:

· naivebayes. In this case a naïve Bayes classifier (NBC) will be used.

· hmm. In this case a hidden Markov model (HMM) will be used.

· crf. In this case a conditional random field (CRF) will be used.
3.2.8 Comments

You can also choose to put comments in your input data file. Comments are designated by the percent “%” sign. Any line starting with “%” will be ignored.

Executing

The purpose of the AR program is to learn models that describe activities based on sensor data that is collected while the activity is performed. The ability to learn these models is controlled by various user-specified parameters, which control the methods that are used.

3.3 Command

AR uses a command-line interface. In order to run AR, you must be logged on to the Unix machine where the application was downloaded and installed. From the Unix prompt, the command would be as follows:

ar DataFile ParameterFile <options>
There are several points which should be noted here:

· ar is the name of the executable. The above example assumes that you are running the application from the same directory where the executable resides (which is probably in ./bin/). If the desire is to run the application from another directory, ar will have to be “pathed”.

· DataFile is the name (and path) of the data input file.

· ParameterFile is the name (and path) of the parameter input file.

· options will be discussed in the next section.

3.3.1 Options

Because of varying ways that sequences can be processed and analyzed, there are several command-line options available to be used. Each of these options can result in different results when used together or by themselves.

3.3.1.1 -eval #

This argument controls the type of accuracy evaluation that is used in AR. Valid values are:

1. This evaluation approach segments the data into separate sequences for each activity occurrence. Each activity occurrence has a specific beginning and ending and is treated as a whole unit.
2. This approach is akin to leave-one-out evaluation in which each data point takes a turn as a test example. Data is handled in streaming fashion. As such, there is no specific begin or end to any activity (any begin or end that appears in the data file is ignored). The amount of data specified by “mode” set is used to train the models. During testing a sliding window of length WINDOW (defined in ar.h and measured in number of sensor events) is moved through the dataset. The first WINDOW-1 events are used to define the context for the test example and AR generates a label for the last event in the window before the window is incremented by one event. Classification begins with the first event that has a sufficiently large test window. The classification accuracy is calculated over all windows that are considered in the dataset.

The default value is for the naïve Bayes and hidden Markov models is 1, for the CRF model the default value is 2.

3.3.1.2 -partitiontype #

This argument controls the type of accuracy evaluation that is used in AR. Valid values are:

1. Activities are deterministically partitioned into train and test sets, in order of appearance by activity and activity occurrence.
2. Activities are randomly partitioned into train and test sets, still maintaining the an event distribution into K separate folds.

The default value is 1.

3.3.1.3 -output #

This argument controls the amount of AR's screen output. Valid values are:

1. Print total accuracy results.
2. Print total accuracy results and a confusion matrix. (This is the default value.)
3. Print total accuracy results, a confusion matrix, and a summary of activity occurrence times and statistics.

The default value is 1.

3.3.1.4 –modelfile name

This argument allows the user to specify the name of the model file (stored in the variable name). The default value for the modelfile parameter is .model.

3.3.1.5 –mode #

This argument specifies the train/test mode in which the code should be run. Valid values are:

1. Train mode. In this mode the model is learned from the data in the input file and appropriate parameters are saved to a file. The model parameters will be stored in the file modelfile.modeltype, where modelfile is the model file name (can be customized, see –modelfile option) and modeltype is the type of learning model used (nbc, hmm, or crf).
2. Test mode. In this mode model parameters are read from a file and used to label the input file as test data. This argument specifies that the entire input data file be used to test the model stored in the file modelfile.modeltype, where modelfile is the model file name (can be customized, see –modelfile option) and modeltype is the type of learning model used (nbc, hmm, or crf).
3. Both. In this mode data from the input file is used to both train and test the model.

The default value is 3.
3.3.1.6 –trainiterations #

This parameter specifies the number of training iterations that will be used by the CRF model. The default number is 30.

3.4 Other Tools

The following sections cover various tools that are available on the CASAS web page.

3.4.1 PyViz

This tool is written in Python and is used to visualize a sequence of sensor events and the distribution of activity occurrences.

3.4.2 SDG

This tool is written in C and creates synthetic sensor data emulating various activity patterns.

Notes/Issues

The following sections represent various notes and issues.

3.5 Unix

AR was designed and developed to run on a Unix-based system. The application was tested on Linux, but should be compatible with any Unix system. AR is written in C, where every effort was made to use only standard ANSI C constructs and functions.

A. Appendix - Terminology

The following terminology was referenced in this document:

AR –
Activity Recognition program
CRF –
Conditional random field

HMM – Hidden Markov model
NBC –
Naïve Bayes classifier

vii
_MCI Confidential___

Integrating Subdue with Analyst Notebook

v
February 16, 2010 KEYWORDS * MERGEFORMAT

